THE p-BLOCK ELEMENTS (GROUP 15, 16, 17 AND 18)

FACT/DEFINITION TYPE QUESTIONS

 Ionic radii (in Å) of As³⁺, Sb³⁺ 	+ and Bi ³⁺ follow the order
--	---

- (a) $As^{3+} > Sb^{3+} > Bi^{3+}$
- (b) $Sb^{3+} > Bi^{3+} > As^{3+}$
- (c) $Bi^{3+} > As^{3+} > Sb^{3+}$
- (d) $Bi^{3+} > Sb^{3+} > As^{3+}$
- Which of the following statements is not correct for nitrogen?
 - (a) Its electronegativity is very high
 - (b) d-orbitals are available for bonding
 - (c) It is a typical non-metal
 - (d) Its molecular size is small
- Collectively the elements of group 15 are called -
 - (a) pnicogens
- (b) pnicopens
- (c) nicopen
- (d) None of these
- Which one of the following elements is most metallic?
- (b) As
- (d) Bi Which of the following statement is incorrect for group 15 elements?
- (a) Order of ionization enthalpies is

$$\Delta_{i}H_{1} < \Delta_{i}H_{2} < \Delta_{i}H_{3}$$

- The boiling point and melting point increases from top to bottom in the group
- Dinitrogen is a gas while all others are solids
- (d) All statements are correct
- Which of the follow group 15 element forms metallic bonds in elemental state?
 - (a) As
- (b) P
- (d) Bi
- The three important oxidation states of phosphorus are
 - (a) -3, +3 and +5
- (b) -3, +3 and -5
- (c) -3, +3 and +2
- (d) -3, +3 and +4
- Nitrogen is relatively inactive element because
 - (a) its atom has a stable electronic configuration
 - it has low atomic radius
 - its electronegativity is fairly high
 - (d) dissociation energy of its molecule is fairly high
- Which of the following has the highest $p\pi p\pi$ bonding tendency?
 - (a) N
- (b) P
- (c) As
- (d) Sb

- Pick out the wrong statement.
 - Nitrogen has the ability to form $p\pi$ - $p\pi$ bonds with itself.
 - Bismuth forms metallic bonds in elemental state.
 - Catenation tendency is higher in nitrogen when compared with other elements of the same group.
 - Nitrogen has higher first ionisation enthalpy when compared with other elements of the same group.
- 11. Nitrogen forms N2, but phosphorus is converted into P4 from P, the reason is
 - (a) Triple bond is present between phosphorus atom
 - (b) $p_{\pi} p_{\pi}$ bonding is strong
 - $p_{\pi} p_{\pi}$ bonding is weak
 - (d) Multiple bond is formed easily
- 12. What causes nitrogen to be chemically inert?
 - Multiple bond formation in the molecule
 - Absence of bond polarity
 - Short internuclear distance
 - (d) High bond energy
- 13. Among the 15th group elements, as we move from nitrogen to bismuth, the pentavalency becomes less pronounced and trivalency becomes more pronounced due to
 - Non metallic character (b) Inert pair effect
 - (c) High electronegativity (d) Large ionization energy
- 14. Pentavalence in phosphorus is more stable when compared to that of nitrogen even though they belong to same group. This is due to
 - (a) dissimilar electronic configuration
 - (b) due to presence of vacant d-orbitals
 - (c) reactivity of phosphorus
 - (d) inert nature of nitrogen
- 15. Which one has the lowest boiling point?
- (b) PH₃
- (c) AsH₃
- (d) SbH₂
- 16. Most acidic oxide among the following is -(a) N_2O_5
- (b) P₂O₅
- (c) N₂O₄
- (d) As_2O_3
- Which of the following species has the highest dipole moment?
 - (a) NH₃
- (b) PH₃
- (c) AsH₂
- (d) SbH₂

- 18. The correct decreasing order of basic strength is:
 (a) AsH₃ > SbH₃ > PH₃ > NH₃
 (b) SbH₃ > AsH₃ > PH₃ > NH₃
 (c) NH₃ > PH₃ > AsH₃ > SbH₃
 (d) PH₃ > AsH₃ > SbH₃ > NH₃
- Which of the following fluorides does not exist?
 (a) NF₅
 (b) PF₅
 (c) AsF₅
 (d) SbF₅
- 20. The p-block element of group 15 that forms predominantly basic oxide is(a) N(b) P

(d) Bi

- 21. With respect to protonic acids, which of the following statements is correct?
 (a) PH₃ is more basic than NH₃
 (b) PH₃ is less basic than NH₃
- (c) PH₃ is equally basic as NH₃
 (d) PH₃ is amphoteric while NH₃ is basic
- 22. PCl₅ is possible but NCl₅ does not exist:(a) in N, d-sub-shell is absent
 - (b) ionization energy of N is very high
 - (c) it does not like Cl(d) None of these

(c) As

- 23. Maximum covalency of nitrogen is _____
 - (a) 3 (b) 5 (c) 4 (d) 6
- 24. Elements of group-15 form compounds in +5 oxidation state. However, bismuth forms only one well characterised compound in +5 oxidation state. The compound is
 - (a) Bi_2O_5 (b) BiF_5 (c) $BiCl_5$ (d) Bi_2S_5
- 25. Pure nitrogen is prepared in the laboratory by heating a mixture of
 - (a) NH₄OH+NaCl (b) NH₄NO₃+NaCl (c) NH₄Cl+NaOH (d) NH₄Cl+NaNO₂.
- On heating ammonium dichromate and barium azide separately we get
 - (a) N₂ in both cases
 - (b) N₂ with ammonium dichromate and NO with barium azide
 - (c) N_2O with ammonium dichromate and N_2 with barium azide
 - (d) N₂O with ammonium dichromate and NO₂ with barium azide
- 27. In Haber's process for the manufacture of NH₃:
 - (a) finely divided nickel is used as a catalyst
 - (b) finely divided iron is used as a catalyst
 - (c) finely divided molybdenum is used as a catalyst
 - (d) no catalyst is necessary
- 28. Ammonia on reaction with hypochlorite anion can form:
 - (a) NO
- (b) N₂H₄
- (c) NH₄Cl
- (d) Both (b) and (c)

- 29. NH₃ gas is dried over:
 - (a) CaO (b) HNO₃ (c) P₂O₅ (d) CuSO₄
- 30. The shape of ammonia molecule is
 - a) tetrahedral (b) pyramidal
 - (c) planar triangle (d) octahedral
- When ammonia is heated with cupric oxide, a molecule of ammonia will
 - (a) gain 3 electrons (b) lose 3 electrons (c) gain 2 electrons (d) lose 2 electrons
- 32. In which the NH₃ is not used?
 - (a) Cold storage
 - (b) Anaesthetic
 - (c) Manufacture of rayon and plastic
 - (d) None of these
- Liquid ammonia bottles are opened after cooling them in ice for sometime. It is because liquid NH₃
 - (a) Brings tears to the eyes
 - (b) Has a high vapour pressure
 - (c) Is a corrosive liquid
 - (d) Is a mild explosive
- **34.** Ammonia is generally manufactured for fertilizers by the reaction
 - (a) $2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O + 2NH_3$
 - (b) By passing an electric discharge in a mixture of N₂ and H₂
 - (c) By passing a mixture of N₂ and H₂ under high pressure and moderate temperature over a catalyst
 - (d) None of these
- 35. Nitrogen dioxide cannot be obtained by heating:
 - (a) KNO₃
- (b) $Pb(NO_3)_2$
- (c) Cu(NO₃)₂
- (d) AgNO₃
- **36.** Which of the following oxides is neutral?
 - (a) N₂O₃
- (b) N₂O₄
- (c) N_2O_5
- (d) N₂O
- 7. The bonds present in N_2O_5 are :
 - (a) only ionic
- (b) covalent and coordinate
- (c) only covalent
- (d) covalent and ionic
- **38.** Which of the following oxides of nitrogen is a coloured gas?
 - (a) N_2O
- (b) NO
- (c) N_2O_5
- (d) NO₂
- 39. Which of the following shows nitrogen with its increasing order of oxidation number?
 - (a) $NO < N_2O < NO_2 < NO_3^- < NH_4^+$
 - (b) $NH_4^+ < N_2O < NO_2 < NO_3^- < NO$
 - (c) $NH_4^+ < N_2O < NO < NO_2 < NO_3^-$
 - (d) $NH_4^+ < NO < N_2O < NO_2 < NO_3^-$
- **40.** In which one of the following oxides of nitrogen, one nitrogen atom is not directly linked to oxygen?
 - (a) NO
- (b) N₂O₄
- (c) N₂O
- (d) N_2O_3

- 41. Which of the following oxides of nitrogen reacts with FeSO₄ to form a dark brown compound
 - (a) N₂O
- (b) NO
- (c) NO₂
- (d) N₂O₃
- 42. Which oxide of nitrogen is obtained on heating ammonium nitrate at 250°C?
 - (a) Nitric oxide
- (b) Nitrous oxide
- (c) Nitrogen dioxide
- (d) Dinitrogen tetraoxide
- 43. Which of the following can be used as an anaesthesia?
 - (a) N₂O
- (b) NO
- (c) NCl₃
- (d) NO₂
- 44. A deep brown gas is formed by mixing two colourless gases which are
 - (a) NO2 and O2
- (b) N₂O and NO
- (c) NO and O2
- (d) NH₃ and HCl
- Which of the following elements does not form stable diatomic molecules?
 - Iodine
- (b) Phosphorus
- (c) Nitrogen
- (d) Oxygen
- 46. The catalyst used in the manufacture of HNO₃ by Ostwald's process is:
 - (a) platinum gauze
- (b) vanadium pentoxide
- (c) finely divided nickel
- (d) platinum black.
- Concentrated nitric acid, upon long standing, turns yellow brown due to the formation of
 - (a) NO
- (b) NO₂
- (c) N₂O
- (d) N_2O_4
- 48. Which of the following trihalide is unstable?
 - (a) NF₃
- (b) AsCl₃
- (c) SbBr₂
- (d) NCl₃
- What will be the A and B in the following equations.

$$8NH_3 + 3Cl_2 \longrightarrow 6NH_4Cl + N_2$$
(A)

$$NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl$$
(B)

- (a) A = Excess, B = Excess
- (b) A = Limited, B = Excess
- (c) A = Excess, B = Limited
- (d) A = Limited, B = Limited
- Which of the following is the strongest reducing agent?
 - (a) NH₂
- (b) PH₂
- (c) BiH₂
- (d) SbH₃
- 51. Which of the following element will form acidic oxides of type E_2O_3 ?
 - (a) As
- (b) Sb
- (d) P
- **52.** Which one of the following is not an use of ammonia?
 - To produce various nitrogenous fertilizers.
 - In manufacture of nitric acid
 - As a refrigerate
 - In the pickling of stainless steel

- The nitrogen oxides that contain(s) N-N bond(s) is /are
 - (i) N₂O
- (ii) N₂O₃
- (iii) N₂O₄
- (iv) N₂O₅
- (a) (i),(ii)
- (b) (ii),(iii),(iv)
- (c) (iii), (iv)
- (d) (i), (ii) and (iii)
- Zinc on reaction with dilute HNO₃ gives x and zinc on reaction with concentrated HNO3 gives y. Identify x and y.
 - (a) $x = NO_2, y = N_2O$
- (b) $x = N_2O, y = NO$
- (c) $x = NO, y = NO_2$
- (d) $x = N_2O, y = NO_2$
- Which of the following is incorrect for white and red phosphorus?
 - They are both soluble in CS₂
 - (b) They can be oxidised by heating in air
 - They consist of the same kind of atoms
 - (d) They can be converted into one another
- Which of the following phosphorus is most reactive?
 - (a) Red phosphorus
- (b) White phosphorus
- (c) Scarlet phosphorus
 - (d) Violet phosphorus
- White phosphorus is
 - (a) a monoatomic gas
- (b) P₄, a tetrahedral solid
- (c) P₈, a crown
- (d) a linear diatomic molecule
- Which property of white phosphorus is common to red phosphorous?
 - (a) It burns when heated in air.
 - It reacts with hot caustic soda solution to give phosphine.
 - It shows chemiluminescence.
 - (d) It is soluble in carbon disulphide.
- Which of the following statements regarding allotropic forms of phosphorus is incorrect?
 - White phosphorus is more reactive than red and black due to high angular strain.
 - Red phosphorus on heating catches fire and give dense red fumes of P₄O₁₀.
 - Red phosphorus is polymeric in nature consisting of chains of P_4 tetrahedral.
 - Black phosphorus has two forms α -black and β -black phosphorus
- Which of the following is incorrect?
 - (a) M.p of monoclinic sulphur > m.p. of rhombic sulphur.
 - Specific gravity of rhombic sulphur > specific gravity of monoclinic sulphur.
 - Monoclinic sulphur is stable below 369 K.
 - Both rhombic sulphur and monoclinic sulphur have S₈ molecules.
- One mole of calcium phosphide on reaction with excess water gives
 - (a) one mole of phosphine
 - (b) two moles of phosphoric acid
 - (c) two moles of phosphine
 - (d) one mole of phosphorus pentoxide PH₂, the hydride of phosphorus is
 - (a) metallic
- (b) ionic
- (c) non-metallic (d) covalent

- 63. Phosphine is not obtained by which of the following reaction
 - (a) White P is heated with NaOH
 - (b) Red P is heated with NaOH
 - (c) Ca₃P₂ reacts with water
 - (d) Phosphorus trioxide is boiled with water
- 64. Phosphine is not evolved when
 - (a) white phosphorus is boiled with a strong solution of Ba(OH)₂
 - (b) phosphorus acid is heated
 - (c) calcium hypophosphite is heated
 - (d) metaphosphoric acid is heated.
- 65. Pure phosphine is not combustible while impure phosphine is combustible, this combustibility is due to presence of
 - (a) P₂H₄
- (b) N₂
- (c) PH5
- (d) P₂O₅
- 66. When orthophosphoric acid is heated to 600°C, the product formed is
 - (a) PH₃
- (b) P₂O₅
- (c) H₃PO₃
- (d) HPO_3
- 67. P_2O_5 is heated with water to give
 - (a) hypophosphorous acid(b) phosphorous acid
 - (c) hypophosphoric acid (d) orthophosphoric acid
- 68. Basicity of orthophosphoric acid is
 - (a) 2
- (b) 3
- (c) 4
- (d) 5
- 69. PCl₃ reacts with water to form
 - (a) PH₃
- (b) H₃PO₄ and HCl
- (c) POCl₃
- (d) H₃PO₄
- 70. H₃PO₂ is the molecular formula of an acid of phosphorus. Its name and basicity respectively are
 - (a) phosphorus acid and two
 - (b) hypophosphorous acid and two
 - (c) hypophosphorous acid and one
 - (d) hypophosphoric acid and two
- 71. The structural formula of hypophosphorous acid is

(b) H P OH

(d) H P OOH

- 72. Number of sigma bonds in P_4O_{10} is
 - (a) 6
- (b) 7
- (c) 17
- (d) 16.
- 73. The number of hydrogen atom(s) attached to phosphorus atom in hypophosphorous acid is
 - (a) three
- (b) one
- (c) two
- (d) zero
- 74. The number of P-O-P bonds in cyclic metaphosphoric acid is

- (a) zero
- (b) two
- (c) three
- (d) four
- 75. Oxidation states of P in H₄P₂O₅, H₄P₂O₆, and H₄P₂O₇, are respectively:
 - (a) +3, +5, +4
- (b) +5, +3, +4
- (c) +5, +4, +3
- (d) +3, +4, +5
- How many bridging oxygen atoms are present in P₄O₁₀?
 - (a) 5 (b) 6
 - (c) 4
- (d) 2
- 77. Which of the following statements is not valid for oxoacids of phosphorus?
 - (a) Orthophosphoric acid is used in the manufacture of triple superphosphate.
 - (b) Hypophosphorous acid is a diprotic acid.
 - (c) All oxoacids contain tetrahedral four coordinated phosphorus.
 - (d) All oxoacids contain atleast one P = O and one P OH group.
- 78. What is hybridization of P in PCl₅?
 - (a) sp^3
- (b) sp^3d^2
- (c) sp^3d
- (d) sp^2
- **79.** Which of the following is a cyclic phosphate?
 - (a) $H_3P_3O_{10}$
- $\begin{array}{ccc} \text{(b)} & \text{H}_6\text{P}_4\text{O}_{13} \\ \text{(d)} & \text{H}_7\text{P}_5\text{O}_{16} \end{array}$
- (c) H₅P₅O₁₅ P—O—P bond is present in
 - (a) $H_4P_2O_6$
- (b) $H_4P_2O_5$
- (c) Both (a) and (b)
- (d) Neither (a) nor (b)
- 81. Orthophosphoric acid is
 - (a) monobasic
- (b) dibasic
- (c) tribasic
- (d) tetrabasic
- **82.** The oxyacid of phosphorous in which phosphorous has the lowest oxidation state is
 - (a) hypophosphorous acid
 - (b) orthophosphoric acid
 - (c) pyrophosphoric acid
 - (d) metaphosphoric acid
- The number of P—O—P bonds in cyclic metaphosphoric acid is
 - (a) zero
- (b) two
- (c) three
- (d) four
- **84.** Among the oxyacids of phosphorus, the dibasic acid is
 - (a) $H_4P_2O_7$
- (b) H₃PO₂
- (c) HPO₃
- (d) H_3PO_3
- 85. The basicity of pyrophosphorus acid is
 - (a) 2
- (b) 4
- (c) 1
- (d) 5
- **86.** The oxidation state of phosphorus in cyclotrimetaphosphoric acid is
 - (a) +3
- (b) +5
- (c) -3
- (d) +2
- 87. Which acid has P P linkage?
 - (a) Hypophosphoric acid (b) Pyrophosphoric acid
 - (c) Metaphosphoric acid (d) Orthophosphoric acid

88.	In a	cyclotrimetaphosphor	ic acid	molecule, how many single	100.	Wh	ich of the following is r	ot co	rrectly matched?	
	and	double bonds are pre	esent?			(a)	SF ₄ – gas	(b)	SeF ₄ – liquid	
	(a)	3 double bonds; 9 si	ingle b	onds			TeF ₄ – solid		SF ₆ – solid	
	(b)	6 double bonds; 6 si	ngle b	onds	101.	The	compound which gives	offo	xygen on moderate heating	
	(c)	3 double bonds; 12	single	bonds		is:				
	(d)	Zero double bonds;	12 sing	gle bonds		(a)	cupric oxide	(b)	mercuric oxide	
89.		ong reducing behavior				(c)	zinc oxide	(d)	aluminium oxide	
		Low oxidation state			102.	Oxy	gen molecule is			
		Presence of two -OI				(a)	diamagnetic with no-u	ınpaiı	red electron(s)	
		Presence of one -OI				(b)	diamagnetic with two	unpa	ired electrons	
		High electron gain e				(c) paramagnetic with two unpaired electrons				
90.		olid state PCl ₅ is a				(d)	paramagnetic with no	unpa	ired electron(s)	
		covalent solid		-	103.	The	number of electrons that	at are	paired in oxygen molecule	
	110	octahedral structure				are				
				octahedral and [PCl ₄]-		(a)	16	(b)		
	(0)	tetrahedra	0.61	octanicarar and [1 c.4]		(c)	14	(d)	7	
	(d)		CL.1+	tetrahedral and [PCl ₆]-	104.	On	heating KClO ₃ we get			
	(-)	octahedra	41	remandaran and [1 c.6]		(a)	KCIO ₂ +O ₂ KCI+O ₃		$KCl + O_2$	
91.	Elec	ctron affinity of sulphi	ır is			(c)	$KCl + O_3$		$KCI + O_2 + O_3$	
		more than O and Se			105.		ich of the following is r			
		more than O but less	than 9	Se.			KI		FeSO ₄	
) less than O but more than Se					KMnO ₄		K_2MnO_4	
	100	equal to O and Se	, than t		106.				re is an ozone layer. Which	
92. (the elements of oxyge	n famil	Vara				ment	s about ozone and ozone	
		non metals		metalloids			er is true?			
		radioactive					Ozone has a triatomic			
93.				polymorphic			It is harmful as it stop			
,,,		ich shows maximum o		8.2			It is beneficial to us as		70	
	(a)		3000	Se		(d)	Conversion of O_3 to C	₂ is a	n endothermic reaction	
0.4	(c)		(d)		107.	Oxy	gen gas can be prepare	d fro	m solid KMnO ₄ by:	
94.	Oxygen and sulphur both are the members of the same group in periodic table but H ₂ O is liquid while H ₂ S is gas because					(a)	treating the solid with	н.	gas	
									gas	
		molecular weight of				(b)	strongly heating the s	ona		
		electronegativity of	suipnu	r is more		(c)	dissolving the solid in	dil.	H_2SO_4	
		H ₂ S is weak acid				(d)	dissolving solid in dil.	HC1		
	(d)		e navii	ng weak hydrogen bonds	108.	Wh	ich of the following sta	temei	nts is correct:	
	3371	between them		1 1 1 1 1		(a)	Ozone is a resonance	hybri	d of oxygen	
95.			nyaria	es has the lowest boiling		(b)	Ozone is an isomer of	oxyg	en	
	poir		(1-)	II C		(c)	Ozone has no relation	ship	with oxygen	
		H ₂ O		H ₂ S		(d)	Ozone is an allotropic	modi	fication of oxygen	
		H ₂ Se		H ₂ Te	109.	Wh	ich of the following or	thei	mal decomposition gives	
96.		ich of the following h				oxy	gen gas?			
		H ₂ Te		H ₂ Se		(a)	Ag ₂ O	(b)	Pb_3O_4	
		H ₂ O		H ₂ S			PbO ₂		All of these	
97.			ydrides	shows the highest boiling	110.		ich of the following is a	n acid	dic oxide?	
	poir		4.	** 0		(a)	Mn_2O_7	(b)	Na ₂ O	
		H ₂ O		H ₂ S			N ₂ O		BaO	
20120		H ₂ Se		H ₂ Te	111.	Ato	micity of sulphur in rho	mbic	sulphur is	
98.				it among the following?		(a)	1	(b)		
	(a)	S	(b)			(c)		(d)		
	(c)		200	Te	112.			forn	n of the sulphur shows	
99.	Whi	ich of the following or				para	amagnetic behaviour?			
	10000000	SnO.	(b)	CaO		(2)	C	(b)	9	
	(a)	51102	(0)	cuo		(a)	S_8		S ₆ All of these	

113. What is X in the following reaction	?
--	---

$$2SO_2(g) + O_2(g) \xrightarrow{X} 2SO_3(g)$$

- (a) V_2O_5
- (b) CuO
- (c) CuCl,
- (d) MnO,

114. Which of the following oxo acid of sulphur has O-O bond?

- (a) H₂S₂O₇
- (b) H₂S₂O₈
- (c) H₂S₂O₆
- (d) H₂S₂O₅
- 115. Carbohydrates on reaction with conc. H₂SO₄ becomes charred due to
 - (a) hydrolysis
- (b) dehydration
- (c) hydration
- (d) oxidation
- 116. Which of the following is the key step in the manufacture of sulphuric acid?
 - (a) Burning of sulphur or sulphide ores in air to generate
 - Conversion of SO2 to SO3 by the reaction with oxygen in presence of catalyst.
 - Absorption of SO₃ in H₂SO₄ to give oleum.
 - (d) Both (b) and (c)
- 117. Hybridization of S in SO₃ is
 - (a) sp^2
- (b) sp^3
- (c) sp²d
- (d) sp^3d^2
- 118. By which of the following SO₂ is formed?
 - (a) Reaction of dil. H2SO4 with O2
 - (b) Hydrolysis of dil. H2SO4
 - (c) Reaction of conc. H₂SO₄ with Cu
 - (d) None of these
- 119. Number of bonds in SO₂ are
 - (a) two σ and two π
- (b) two σ and one π
- (c) two σ and three π
- (d) None of these
- 120. Bleaching action of SO₂ is due to its
 - (a) oxidising property
- (b) acidic property (d) basic property
- (c) reducing property
- 121. The acid which has a peroxy linkage is
 - (a) Sulphurous acid
- (b) Pyrosulphuric acid
- (c) Dithionic acid
- (d) Caro's acid
- 122. S S bond is not present in
 - (a) $S_2O_4^{2-}$
- (b) $S_2O_5^2$
- (c) $S_2O_3^2$
- 123. Oleum is
 - (a) castor Oil
- (b) oil of vitriol
- (c) fuming H₂SO₄
- (d) None of them
- 124. On addition of conc. H₂SO₄ to a chloride salt, colourless fumes are evolved but in case of iodide salt, violet fumes come out. This is because
 - (a) H,SO4reduces HI to I,
 - (b) HI is of violet colour
 - (c) HI gets oxidised to I,
 - (d) HI changes to HIO₃
- 125. Which of the following are peroxoacids of sulphur?
 - (a) H_2SO_5 and $H_2S_2O_8$
- (b) H₂SO₅ and H₂S₂O₅

- (c) $H_2S_2O_7$ and $H_2S_2O_8$ (d) $H_2S_2O_6$ and $H_2S_2O_7$

- 126. Hot conc. H₂SO₄ acts as moderately strong oxidising agent. It oxidises both metals and nonmetals. Which of the following element is oxidised by conc. H2SO4 into two gaseous products?
 - (a) Cu
- (b) S
- (c) C
- (d) Zn
- 127. Caro's acid is
 - (a) H₂SO₃
- (b) H₃S₂O₅
- (c) H₂SO₅
- (d) H₂S₂O₈
- 128. Sulphuric acid reacts with PCl₅ to give
 - (a) thionyl chloride
- (b) sulphur monochloride
- (c) sulphuryl chloride
- (d) sulphur tetrachloride
- 129. Which one of the following reacts with conc. H₂SO₄?
 - (a) Au
- (b) Ag
- (c) Pt
- (d) Pb
- 130. The number of dative bonds in sulphuric acid molecule is
- (b)
- (c) 2
- (d)
- 131. What is the number of sigma (σ) and pi (π) bonds present in sulphuric acid molecule?
 - (a) $6\sigma, 2\pi$
- (b) 6σ,0π
- (c) $2\sigma, 4\pi$
- (d) 2σ , 2π
- 132. Which characteristic is not correct about H₂SO₄?
 - (a) Reducing agent
- (b) Oxidising agent
- (c) Sulphonating agent
- (d) Highly viscous
- 133. Among F, Cl, Br and I the lowest ionization potential will be
 - (a) fluorine
- (b) chlorine
- (c) bromine
- (d) iodine
- 134. The electronegativity follows the order
 - (a) F > O > Cl > Br
- (b) F>Cl>Br>O
- (c) O>F>Cl>Br
- (d) C1>F>O>Br
- 135. The bond energies of F_2 , Cl_2 , Br_2 and I_2 are 155, 244, 193 and 151 kJ mol-1 respectively. The weakest bond will be in
- (b) Cl₂
- (c) F₂
- (d) I₂
- 136. The outer electronic structure of $3s^2 3p^5$ is possessed by
 - (a) O
- (b) a
- (c) Br
- (d) Ar
- 137. Electron gain enthalpy with negative sign of fluorine is less than that of chlorine due to:
 - (a) High ionization enthalpy of fluorine
 - Smaller size of chlorine atom
 - Smaller size of fluorine atom
 - (d) Bigger size of 2p orbital of fluorine
- 138. Which one of the following order is correct for the bond energies of halogen molecules?
 - (a) $I_2 > Cl_2 > Br_2$ (c) $I_2 > Br_2 > Cl_2$
- (b) $Br_2 > Cl_2 > I_2$ (d) $Cl_2 > Br_2 > I_2$
- 139. The correct order of reactivity of halogens with alkalies is (a) F > Cl > Br > I
 - (b) F < Cl > Br < I
 - (c) F < Cl < Br < I
- (d) F < Cl < Br > I

140.	The correct order of increas	sing ox	idising power is						
	(a) $F_2 > Br_2 > Cl_2 > I_2$ (c) $Cl_2 > Br_2 > F_2 > I_2$	(d)	$I_2 < Br_2 < Cl_2 < F_2$						
141.	Fluorine is a stronger ox	cidisin	g agent than chlorine in						
	aqueous solution. This is attributed to many factors excep								
	(a) heat of dissociation								
	(c) heat of hydration								
142	Fluorine exhibits an oxida								
	(a) it can readily accept a		워워 [1] 전에 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						
	(b) it is very strongly ele								
	(c) it is a non-metal	cuone	gative						
	(d) it belongs to halogen	family	17						
143	Which of the following h								
143.	oxidation state in its com								
	(a) Cl	(b)							
	(c) I	(d)							
144	The halogen that is most	30.50							
144.	(a) F ₂		Cl ₂						
		(d)							
145	(c) Br ₂								
145.	Which one of the followin	g elem	ients snows more than on						
	oxidation states? (a) Sodium	(L)	Fluorino						
		573.57.07	Fluorine						
146	(c) Chlorine		Potassium						
146.	Which of the following ha	iogens	exhibit only one oxidation						
	state in its compounds? (a) Bromine	(1-)	Chlorino						
		0.76	Chlorine						
147	(c) Fluorine	2000	Iodine						
14/.	Which of the following								
	behaviour of bromine in the		ation given below?						
	$H_2O + Br_2 \rightarrow HOBr + HI$								
	(a) Proton acceptor only								
	(b) Both oxidized and re-	duced							
	(c) Oxidized only								
	(d) Reduced only								
148.	Among the following which								
	(a) Br ₂	(b)							
	(c) Cl ₂	(d)							
149.	The correct order of heat of								
	(a) $HI > HBr > HCl > HF$								
		2007.00	HCl>HBr>HF>HI						
150.	Which is the weakest out								
	(a) HF	(b)	HCl						
	(c) HBr	(d)	HI						
151.	Which of the following is	most	volatile?						
	(a) HI	(b)	HBr						
	(c) HCl	(d)	HF						
152.	At room temperature, HCl	is a ga	s while HF is a low boiling						
	liquid. This is because	anamin a ki	er - www.comana.com.com.com.com.com.com.com.com.com.com						
	(a) H- F bond is covalen	t (b)	H-F bond is ionic						
			HF has hydrogen bond						
153.	The bleaching action of cl								

(b) hydrogenation

(d) oxidation

```
154. Cl2 reacts with hot and conc. NaOH to give -
      (a) NaClO
                                     (b) NaClO<sub>2</sub>
                                     (d) NaClO<sub>4</sub>
      (c) NaClO<sub>2</sub>
155. When chlorine reacts with cold and dilute solution of sodium
      hydroxide, the products obtained are
      (a) CI-+CIO-
                                    (b) Cl-+ ClO<sub>2</sub>
      (c) Cl-+ ClO<sub>3</sub>
                                    (d) Cl^- + ClO_4^-
156. Chlorine is liberated when we heat
      (a) KMnO<sub>4</sub> + NaCl
                                    (b) K_2Cr_2O_7 + MnO_2
      (c) Pb(NO_3)_2 + MnO_2
                                    (d) K_2Cr_2O_7 + HCl
157. Which of the following is used in the preparation of chlorine?
      (a) Only MnO-
      (b) Only KMnO<sub>4</sub>
      (c) Both MnO2 and KMnO4
      (d) Either MnO<sub>2</sub> or KMnO<sub>4</sub>
158. The reaction of \tilde{\text{KMnO}}_4 and HCl results in
      (a) oxidation of Mn in KMnO<sub>4</sub> and production of Cl<sub>2</sub>
      (b) reduction of Mn in KMnO<sub>4</sub> and production of H<sub>2</sub>
      (c) oxidation of Mn in KMnO<sub>4</sub> and production of H<sub>2</sub>
      (d) reduction of Mn in KMnO<sub>4</sub> and production of Cl<sub>2</sub>
159. Bleaching powder on standing forms mixture of:
      (a) CaO+Cl<sub>2</sub>
                                    (b) CaO+CaCl<sub>2</sub>
      (c) HOCl+Cl2
                                    (d) CaCl_2 + Ca(ClO_3)_2
160. Hydrochloric acid at 25°C is
      (a) ionic and liquid
                                    (b) covalent and liquid
      (c) ionic and gas
                                    (d) None of these
161. Gaseous HCl is a poor conductor of electricity while its
      aqueous solution is a good conductor this is because
      (a) H<sub>2</sub>O is a good conductor of electricity
      (b) a gas cannot conduct electricity but a liquid can
          HCl gas does not obey Ohm's law, whereas the solution
      (d) HCl ionises in aqueous solution
162. Which one is most stable to heat -
      (a) HClO
                                     (b) HClO<sub>2</sub>
      (c) HClO<sub>2</sub>
                                    (d) HClO<sub>4</sub>
163. Interhalogen compounds are more reactive than the
      individual halogen because
      (a) two halogens are present in place of one
      (b) they are more ionic
          their bond energy is less than the bond energy of the
           halogen molecule
      (d) they carry more energy
164. Which of the following is not the characteristic of
      interhalogen compounds?
```

(a) They are more reactive than halogens

(c) They are covalent in nature

165. The hybridization in ICl₇ is

(a) sp^3d^3

(c) sp^3d

(b) They are quite unstable but none of them is explosive

(d) They have low boiling points and are highly volatile.

(b) d^2sp^3

(d) sp^3

(a) reduction

(c) chlorination

166.	In which of the and oxidized		ction	ns chlorine is both reduced	180.		noble gas which wa n on the earth	s disco	vered first in the sun and		
	(a) $2KMnO_4 + 16HCl \longrightarrow 2KCl + 2MnCl_2 + 8H_2O + 5Cl_2$					(a)	argon	(b)	xenon		
	135 (I)						neon	25	helium		
	(b) $6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$ (c) $\text{NH}_3 + 3\text{Cl}_2 \longrightarrow \text{NCl}_3 + 3\text{HCl}$				181.	2			to give two inert gases X is		
	(c) NH ₃ +3	$Cl_2 \longrightarrow NCl_3$	3+3	HCI					200 A 100		
	(a) $I_2 + 6H_2$	$O + 5Cl_2 \longrightarrow$	2H	10 ₃ + 10HC1		(a)	²³⁸ ₉₂ U	(b)	²²⁶ ₈₈ Ra		
167.				ved when Cl ₂ reacts with		(c)	Both (a) and (b)	(d)	Neither (a) nor (b)		
	hot and concentrated NaOH?				182.	Wh	ich of the following no	ses has the highest positive			
		laOCl					tron gain enthalpy va				
4.50				NaOCl, NaClO ₃		(a)	Helium	(b)	Krypton		
168.	Which one of the following noble gases is not found in the						Argon	(d)	Neon		
	atmosphere		V.	183.	Wh	ich inert gas show abi	normal	behaviour on liquefaction			
	(a) Rn		(b)			(a)			Не		
160	(c) Ne		(d)			(c)	Ar	(d)	Kr		
109.		nber of the fami			184.	The	ease of liquefaction	of nob	ole gases increases in the		
	(a) argon		200	radon		orde	er				
150	(c) xenon		2000	neon		(a)	He < Ne < Ar < Kr <	Xe			
1/0.				rect sequence of the noble		(b)	Xe < Kr < Ne < Ar <	He			
171.	gases in their group in the periodic table? (a) Ar, He, Kr, Ne, Rn, Xe (b) He, Ar, Ne, Kr, Xe, Rn					(c)	Kr < Xe < He < Ne <	Ar			
				He, Ne, Ar, Kr, Xe, Rn		(d)	Ar < Kr < Xe < Ne <	He			
					185.	The	correct order of solu	bility in	water for He, Ne, Ar, Kr,		
	Which of the following noble gases <i>do not</i> have an octet of electrons in its outermost shell?					Xe i	S				
	(a) Neon			Radon		(a)	He > Ne > Ar > Kr >	Xe			
	(c) Argon		200	Helium		(b)	Ne>Ar>Kr>He>	Xe			
172		npaired electror				(c)	Xe > Kr > Ar > Ne >	He			
	(a) zero		(b)			(d)	Ar > Ne > He > Kr >	Xe			
	(c) 4		(d)		186.	Wh	ich one of the followi	ng elen	nents is most reactive?		
173.	Control of the contro		1	the ionisation potential of		(a)	He	(b)	Ne		
		the highest?		F		(c)	Ar	(d)	Xe		
	(a) Oxygen	1,577	(b)	Argon	187.	Nob	le gases are group of	elemen	nts which exhibit very		
	(c) Barium			Cesium		(a)	high chemical activi	ty			
174.	Gradual addition of electronic shells in the noble gases					(b)	low chemical activit	y			
	causes a decrease in their					(c)	minimum electroneg	gativity			
	(a) ionisation energy (b) atomic radius					(d) much paramagnetic properties					
	(c) boiling	point	(d)	density	188.	In 2	KeF2, XeF4, XeF6 the	numbe	er of lone pairs on Xe are		
175.	Which of the	following nobl	e ga	s is least polarisable?		resp	ectively				
	(a) He		(b)			(a)	2, 3, 1	(b)	1,2,3		
	(c) Ar		(d)	Ne		(c)	4, 1, 2	(d)	3, 2, 1.		
176.			oups.	, when He is placed, its all	189.			ofelec	trons in XeOF ₄ is		
	the propertie	es are satisfied				(a)	0	(b)	1		
	(a) with alk	ali metals	(b)	with halogens		(c)	2	(d)	3		
	(c) with ine			None of these	190.	Nob			ther elements because		
177.	The most about	undant inert gas	s in t	the atmosphere is		(a)	they have completel	y filled	valence shell (ns ² np ⁶)		
	(a) He		(b)			(b)	the sizes of their ato	ms are	very small		
	(c) Ar		(d)			(c)	they are not found i	n abund	dance		
178.	The lowest boiling point of helium is due to its					(d)	they are monoatomic	С			
	(a) inertness					Wh	ich one of the followin	ng react	tions of xenon compounds		
	(b) gaseous					is n	ot feasible?				
	(c) high polarisability					(a)	3XeF ₄ + 6H ₂ O	→ 2Xe	+XeO ₃ +12HF+1.5O ₂		
12.520.00				between atoms		(b)	2XeF ₂ + 2H ₂ O		The second section of the second section is a second section of the second section section is a second section		
179.		e noble gas has	high	nest polarisability?		2400000	7		-		
	(a) He		(b)			(c)	$XeF_6 + RbF \longrightarrow R$				
	(c) Kr		(d)	Xe		(d)	$XeO_3 + 6HF \longrightarrow$	xer ₆ +.	эн ₂ О		

192.	Wh	ich of the following has	maxi	mum number of lone pairs	207.	Wh	ich statement about no	ble ga	ases is not correct?		
		ociated with Xe?					Xe forms XeF ₆				
	(a)	XeF ₄	(b)	XeF ₆			Ar is used in electric l	oulbs			
		XeF ₄ XeF ₂	(d)	XeO ₃		(c)	Kr is obtained during	radio	active disintegration		
		shape of XeO ₂ F ₂ mole				(d)	He has the lowest b.pt	amo	ng all the noble gases		
		trigonal bipyramidal			208.	The	geometry of XeF6 is				
				see-saw		(a)	planar hexagon	(b)	regular octahedron		
194.		F ₄ on partial hydrolysis				(c)	distorted octahedron	(d)	square bipyramid		
		XeF ₄	(b)	XeOF ₂	209.	Trig	gonal bipyramidal geon	netry	is shown by :		
		XeF ₄ XeOF ₄	(d)	XeO ₂		(a)	XeO ₃ F ₂	(b)	XeO_3F_2		
195.		ich element out of He. A	r. Kr	and Xe forms least number		(c)	XeO ₃ F ₂ FXeOSO ₂ F	(d)	[XeF ₈] ²⁻		
		compounds ?	.,		210.	Wh	Which has trigonal bipyramidal shape?				
		Не	(b)	Ar		(a)	XeOF ₄ XeO ₃ F ₂		XeO ₃		
		Kr	(d)					(d)	XeOF ₂		
		e element which has no	100		211.		on is used				
		Ar	(b)	·—·			in filling airships				
	(c)			Rn			to obtain low temperar				
	500		322505				in high temperature we				
197.		F ₆ on complete hydroly					in radiotherapy for tre				
		Xe	(0)	XeO ₂	212.		\$1.00 P. 1774 P. 17.17 P. 17.1		ge tubes to gives different		
		XeO ₃				colo	ours. Reddish orange gl				
		F4 involves which hybri	dizat	ion		3.00	Ar	(b)			
		sp 2 1	(b)	sp ²	20000201		Xe	(d)			
	(a) sp (b) sp^2 (c) sp^2d (d) sp^3d^2							ments regarding helium is			
199.	Sha	pe of XeOF ₄ is	4.				orrect?				
				square pyramidal		(a)			and sustain powerful		
		pyramidal		T-shaped			superconducting mag				
200.		hybridization of Xe in				(b)			agent for carrying out		
		sp ³ sp ³ d	(b)	sp ²			experiments at low ten				
				sp ² d		(c)			ons instead of hydrogen		
201.	Wh	ich is a planar molecule	?			/ B	because it is lighter an				
		XeO_4		XeF ₄	211		It is used in gas-coole				
		XeOF ₄		XeO_2F_2	214.		20 CO	ibes 1	for advertisement mainly		
202.	Wh	ich of the following has	$s sp^3$	hybridization?		con		71.	1.45		
	(a)	XeO_3	(b)	BCl ₃		200	xenon		helium		
	(c)	XeF ₄	(d)	BBr ₃	215	1000	neon		argon		
203.	The	number of lone pair of	electr	ons present on Xe in XeF ₂	415.			a wat	er with a mixture of which		
	is						he following gases	(12)	O and Ar		
	(a)	3	(b)	4		(a)	O ₂ and He	(4)	CO and Ar		
	(c)	2	(d)	1	216	Wh	ich of the following is	the 1	CO ₂ and Ar ife saving mixture for an		
204.	Hyb	oridization and structur	e of 2	KeF ₄ is	210.		ma patient?	tile i	ne saving mixture for an		
	(a)	sp ³ d, trigonal bipyram	idal	37.53.00 M			Mixture of helium and	lovvo	ren		
	(b)	sp ³ , tetrahedral					Mixture of neon and o				
		sp^3d^2 , square planar					Mixture of xenon and				
		sp^3d^2 , hexagonal					Mixture of argon and				
205.			of e	lectrons on Xe atoms	217.		ich of the following sta				
		F ₂ , XeF ₄ and XeF ₆ mole				(i)			etween particles of noble		
		3, 2 and 1		4, 3 and 2		(.)	gases are due to weak				
		2, 3 and 1		3, 2 and 0		(ii)			cular oxygen is very close		
206.		7)	(S) (S) (S)	orrect pair with respect to		(-1)	to that of xenon.		on gen is very close		
	molecular formula of xenon compound and hybridization						Hydrolysis of XeF ₆ is	redox	reaction.		
		e of Xenon in it?		-r		(iv)	Xenon fluorides are no	ot rea	ctive.		
		XeF_4 , sp^3	(b)	XeF_2 , sp		(a)	(i) and (iii)		(i) and (ii)		
		XeF_2 , sp^3d		XeF_4 , sp^2		(c)	(ii) and (iii)		(iii) and (iv)		
	(0)	2, op o	(4)	4,00		1,0	, ,	1-7			

- 218. Which of the following element has the property of diffusing through most commonly used laboratory materials such as rubber, glass or plastics.
 - (a) Xe
- (b) Rn
- (c) He
- (d) Ar
- 219. Which of the following is used to produce and sustain powerful superconducting magnets to form an essential part of NMR spectrometer?
 - (a) Ar
- (b) Ne
- (c) Rn
- (d) He

STATEMENT TYPE QUESTIONS

- 220. Which of the following statements are correct?
 - (i) Arsenic and antimony are metalloids.
 - (ii) Phosphorus, arsenic and antimony are found mainly as sulphide minerals.
 - (iii) Covalent redii increases equally from N to Bi.
 - (iv) Elements of group 15 have extra stability and higher ionisation energy due to exactly half filled ns²np³ electronic configuration.
 - (v) In group 15 elements only nitrogen is gas whereas all others are solids.
 - (a) (i), (iv) and (v)
- (b) (ii), (iii) and (iv)
- (c) (i), (ii) and (iii)
- (d) (ii), (iii) and (v)
- 221. Read the following statements regarding chemical reactivity of group 15 elements.
 - (i) Only compound of Bi with +5 oxidation state is BiF₅.
 - Intermediate oxidation states for both nitrogen and phosphorus disproportionate in both acid and alkali.
 - (iii) Nitrogen due to absence of d-orbitals in its valence shell cannot form $d\pi$ - $p\pi$ bond as the heavier elements thus $R_3P = O$ exists but $R_3N = O$ does not exists.
 - (iv) BiH₃ is the strongest reducing agent amongst the hydrides of nitrogen family.
 - (v) P₂O₂ is more acidic than P₂O₅.

Which of the following is the correct code for the statements above?

- (a) FTFFT
- (b) FFTTF
- (c) TFTTF
- (d) TFTFT
- 222. Which of the following statements are correct?
 - (i) All the three N—O bond lengths in HNO₃ are equal.
 - (ii) All P—Cl bond lengths in PCl₅ molecule in gaseous state are equal.
 - (iii) P₄ molecule in white phohsphorus have angular strain therefore white phosphorus is very reactive.
 - (iv) PCl₅ is ionic in solid state in which cation is tetrahedral and anion is octahedral.
 - (a) (i) and (iv)
- (b) (iii) and (iv)
- (c) (ii) and (iii)
- (d) (ii) only
- **223.** Which of the following is the correct code for statements below?
 - Due to small size oxygen has less negative electron gain enthalpy than sulphur.
 - (ii) Oxygen shows only -2 oxidation state whereas S, Se and Te shows +4 O.S in their compounds with oxygen and +6 with fluorine.

- (iii) All hydrides of oxygen family possess reducing property which increases from H₂S to H₂Te.
- (iv) Among hexahalides of group 16 hexafluorides are the onlys table halides.
- (v) Dimeric monohalides of group 16 undergo disproportionation.
- (a) TFFTT
- (b) FTTFF
- (c) FTFTF
- (d) TFTFT
- 224. The correct statement(s) about O₃ is(are)
 - i) O—O bond lengths are equal
 - (ii) Thermal decomposition of O3 is endothermic
 - (iii) O₃ is diamagnetic in nature
 - (iv) O3 has a bent structure
 - (a) (i) and (iii)
- (b) (ii) and (iii)
- (c) (i), (ii) and (iv)
- (d) (i) and (iv)
- 225. Consider the following statements
 - (i) Reaction 2Fe³⁺ + SO₂ + 2H₂O → 2Fe²⁺ + SO₄²⁻ + 4H⁺ shows reducing character of sulphur dioxide
 - (ii) H₂S₂O₈ contains four S = O, two S OH and one O– O bond
 - (iii) NH₃ gas can be dried effectively by using conc. H₂SO₄.
 - (iv) One of the major use of H₂SO₄ is in the manufacture of fertilizers.

Which of the following is the correct code for the statements above?

- (a) TTFF
- (b) TTFT
- (c) FTFT
- (d) TFFT
- **226.** Which of the following statements regarding properties of halogens are correct?
 - Due to small size electron gain enthalpy of fluorine is less than that of chlorine.
 - (ii) Iodine has same physical state but different colour as compare to other members of the group.
 - (iii) Fluorine shows no positive oxidation state.
 - (iv) $\operatorname{In} X_2(g) + \operatorname{H}_2O(1) \longrightarrow \operatorname{HX}(aq) + \operatorname{HOX}(aq)$
 - (where $X_2 = Cl$ or Br)
 - (a) (i), (ii) and (iv)
- (b) (i), (iii) and (iv)
- (c) (ii), (iii) and (iv)
- (d) (iii) and (iv)
- 227. Consider the following statements regarding interhalogen compounds
 - (i) For all types of interhalogen compounds

 $\left(XX^{1}, XX_{3}^{1}, XX_{5}^{1} \text{ and } XX_{7}^{1}\right) X$ is the halogen of lesser electronegativity in comparison to X^{1} .

- (ii) At 298 K all interhalogen compounds are either volatile solids or liquids.
- (iii) CIF undergoes hydrolysis as below,
 - $ClF + H_2O \longrightarrow HF + HOCl$
- (iv) Fluorine containing interhalogen compounds are very useful as fluorinating agents.
- (a) TTFF
- (b) TFTT
- (c) FTFT
- (d) TFFT

- 228. Which of the following statements are correct?
 - Among halogens, radius ratio between iodine and fluorine is maximum.
 - Leaving F—F bond, all halogens have weaker X—X bond than X-X' bond in interhalogens.
 - (iii) Among interhalogen compounds maximum number of atoms are present in iodine fluoride.
 - (iv) Interhalogen compounds are more reactive than halogen compounds.
 - (i) and (ii) (a)
- (b) (i), (ii) and (iii)
- (c) (ii) and (iii)
- (d) (i), (iii) and (iv)
- 229. Which of the following statements are correct?
 - Natural abundance of noble gases is ~ 1% by volume of which Ar is the major constituent.
 - Noble gases have high positive values of electron gain enthalpy.
 - (iii) Preparation of XeF2 requires F2 in excess amount.
 - (iv) Complete hydrolysis of all three XeF₂, XeF₄ and XeF₆ gives Xe as one of product.
 - (i) and (iii)
- (b) (ii) and (iv)
- (c) (i) and (ii)
- (d) (ii) and (iii)

MATCHING TYPE QUESTIONS

230. Match the columns

Column-I

Column-II

- (A) $2Pb(NO_3)_2 \xrightarrow{673K}$ $4NO_2 + 2PbO + O_2$
 - (p) High pressure favours the formation of product
- (B) $N_2(g) + O_2(g) \rightleftharpoons$ 2NO(g)
- (q) Product formed is acidic brown gas
- (C) $NH_4NO_3 \xrightarrow{\Delta}$ $N_2O + 2H_2O$
- (r) This reaction occurs at a high temperature about 2000 K
- (D) $N_2(g) + 3H_2(g) \rightleftharpoons$ $2NH_3(g)$
- (s) Product formed is a neutral colourless gas
- (a) A-(r, s), B-(q), C-(s), D-(p)
- (b) A-(q), B-(r,s), C-(s), D-(p)
- (c) A-(q), B-(s), C-(r, s), D-(p)
- (d) A-(q), B-(r, s), C-(p), D-(s)
- 231. Match the columns

Column - I

Column - II (p) Ammonia

(q) Nitric acid

(r) Dinitrogen

- (A) Used in manufacture
- of calcium cyanamide
- (B) Used in manufacture of nitric acid
- (C) Used in pickling of stainless steel
- (a) A-(r), B-(p), C-(q) (b) A-(p), B-(r), C-(q)
- (c) A-(r), B-(q), C-(p) (d) A-(q), B-(p), C-(r)

232. Match the columns.

Column-I Column-II (Oxyacid) (Materials for preparation)

- (A) H₃PO₂
- (p) Red P + alkali
- (B) H₃PO₃
- (q) $P_4O_{10} + H_2O$
- (C) H₃PO₄
- (r) $P_2O_3 + H_2O$
- (D) H₄P₂O₆
- (s) White P + alkali
- (a) (A)-(s), (B)-(r), (C)-(q), (D)-(p)
- (b) (A)-(p), (B)-(r), (C)-(q), (D)-(s)
- (c) (A)-(s), (B)-(r), (C)-(p), (D)-(q)
- (d) (A)-(q), (B)-(r), (C)-(p), (D)-(s)

233. Match the columns

Column - I Column - II

- (A) POCl₃
- (p) Contains four P-OH two P = O and one P - O - P
- (B) H₄P₂O₅
- (q) Yellowish white chloride of phosphorus reacts with moist air
- (C) H₄P₂O₆
- Contains four P OH. two P = O and one P - Pbond
- (D) H₄P₂O₇
- (s) Colourless oily chloride of phosphorus reacts with orthophosphoric
- (a) A-(q), B-(s), C-(p), D-(r)
- (b) A-(s), B-(q), C-(r), D-(p)
- (c) A-(q), B-(s), C-(r), D-(p)
- (d) A-(q), B-(r), C-(s), D-(p)
- 234. Match the columns

Column - I

Column - II

- (A) Metal that shows no reaction with dioxygen
- (p) Platinum
- (B) Metal forms strong acidic oxide with oxygen
- (q) Nitrogen
- (C) A non-metal discharge (r) Manganese of whose oxide might be slowly depleting the
 - concentration of the ozone layer
- (D) Metal which forms amphoteric oxide
- (s) Aluminium
- (a) A-(p), B-(r), C-(q), D-(s)
- (b) A-(r), B-(p), C-(q), D-(s)
- (c) A-(p), B-(q), C-(r), D-(s)
- (d) A-(p), B-(r), C-(s), D-(q)

235. Match the columns.

Column-I

Column-II

- (A) Pb₃O₄
- (p) Neutral oxide
- (B) N₂O
- (q) Acidic oxide
- (C) Mn₂O₂
- (r) Basic oxide
- (D) Bi_2O_3
- (s) Mixed oxide
- (a) A-(p), B-(q), C-(r), D-(s)
- (b) A-(s), B-(p), C-(q), D-(r)
- (c) A-(r), B-(q), C-(s), D-(p)
- (d) A-(s), B-(r), C-(p), D-(q)
- 236. Match the columns.

Column-I

Column-II

- (A) SF₄
- (p) Tetrahedral
- (B) BrF,
- (q) Pyramidal
- (C) BrO₃
- (r) Sea-saw shaped
- (D) NH₄⁺
- (s) Bent T-shaped
- (a) A (r), B (q), C (p), D (s)
- (b) A-(r), B-(s), C-(q), D-(p)
- (c) A-(p), B-(q), C-(r), D-(s)
- (d) A-(p), B-(s), C-(r), D-(q)
- 237. Match the columns

Column - I

Column - II

- (A) HClO₂
- (p) Contains all different bonds
- (B) HClO₃
- q) Contains maximum Cl = O bond
- (C) HClO (r) Contains Cl with lowest O.S.
- (D) HClO₄
- (s) Contains three types of bonds
- (a) A-(s), B-(p, s), C-(p, r), D-(q, s)
- (b) A-(p, s), B-(s), C-(p, r), D-(q, s)
- (c) A-(s), B-(p,r), C-(p,s), D-(q,s)
- (d) A-(p, s), B-(s), C-(q, s), D-(p, r)
- 238. Match the columns.

Column - I (Oxides of halogens)

Column - II

(A) O₂F₂

(Uses)

- (A) O_2F_2 (B) ClO_2
- (p) in water treatment(q) in estimation of CO
- (C) I₂O₅
- for removing plutonium from spent nuclear fuel.
- (a) A-(q), B-(p), C-(r)
- (b) A-(r), B-(p), C-(q)
- (c) A-(p), B-(r), C-(q)
- (d) A-(r), B-(q), C-(p)
- 239. Match the columns

Column - I

Column - II

- (A) XeF₄ (p) Contains similar types of bonds
- (B) XeOF₄
- of bonds
 (q) Contains maximum lone
- (C) XeF,
- (r) Square pyramidal geometry
- (D) XeO_3
- (s) Contains one lone pair

- (a) A-(p), B-(r, s), C-(p, q), D-(p, s)
- (b) A-(r, s), B-(p), C-(r, s), D-(p, s)
- (c) A-(p), B-(p,q), C-(r,s), D-(p,s)
- (d) A-(p), B-(r, s), C-(p, s), D-(p, q)
- 240. Match the columns.

Column-I

Column-II

(p) He

(r) XeF₄

- (A) Partial hydrolysis of the compound does not change oxidation state of central atom
- (B) It is used in modern diving
 - ving (q) XeF₆
- apparatus
 (C) It is used to provide inert atmosphere for filling electrical bulbs
- (D) Its central atom is in sp³d² (s) Ar hybridisation
- (a) A (p), B (s), C (p), D (r)
- (b) A-(p), B-(q), C-(r), D-(s)
- (c) A-(q), B-(p), C-(s), D-(r)
- (d) A-(p), B-(r), C-(q), D-(s)
- 241. Match the columns.

Column-I

Column-II

- (A) XeF_6 (p) sp^3d^3 distorted octahedral
- (B) XeO_3 (q) sp^3d^2 square planar
- (C) $XeOF_4$ (r) sp^3 pyramidal
- (D) XeF_4 (s) sp^3d^2 square pyramidal (a) A - (p), B - (r), C - (s), D - (q)
- (b) A-(p), B-(q), C-(s), D-(r)
- (c) A-(s), B-(r), C-(p), D-(q)
- (d) A-(s), B-(p), C-(q), D-(s)

ASSERTION-REASON TYPE QUESTIONS

Directions: Each of these questions contain two statements, Assertion and Reason. Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select one of the codes (a), (b), (c) and (d) given below.

- (a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.
- (b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion
- (c) Assertion is correct, reason is incorrect
- (d) Assertion is incorrect, reason is correct.
- 242. Assertion: Dinitrogen is inert at room temperature.

Reason: Dinitrogen directly combines with lithium to form ionic nitrides.

243. Assertion: N₂ is less reactive than P₄.

Reason: Nitrogen has more electron gain enthalpy than phosphorus.

244. Assertion: When a metal is treated with conc. HNO₃ it generally yields a nitrate, NO₂ and H₂O.

Reason: Conc. HNO₃ reacts with metal and first produces a metal nitrate and nascent hydrogen. The nascent hydrogen then further reduces HNO₃ to NO₂.

245. Assertion: White phosphorus is more reactive than red phosphorus.

Reason: Red phosphorus consists of P4 tetrahedral units linked to one another to form linear chains.

246. Assertion: Bond angle of H₂S is smaller than H₂O.

Reason: Electronegativity of the central atom increases, bond angle decreases.

247. Assertion: Both rhombic and monoclinic sulphur exist as S_8 but oxygen exists as O_2 .

Reason : Oxfygen forms $p\pi - p\pi$ multiple bond due to small size and small bond length but $p\pi - p\pi$ bonding is not possible in sulphur.

248. Assertion: SF₆ cannot be hydrolysed but SF₄ can be. Reason: Six F atoms in SF₆ prevent the attack of H₂O on sulphur atom of SF6.

CRITICAL THINKING TYPE QUESTIONS

- 249. In nitrogen family, the H-M-H bond angle in the hydrides gradually becomes closer to 90° on going from N to Sb. This shows that gradually
 - (a) The basic strength of the hydrides increases
 - (b) Almost pure p-orbitals are used for M-H bonding
 - (c) The bond energies of M-H bonds increase
 - The bond pairs of electrons become nearer to the central atom
- **250.** Bond dissociation enthalpy of E—H (E = element) bonds is given below. Which of the compounds will act as strongest reducing agent?

SbH, NH, Compound PH, $\Delta_{\rm diss}$ (E—H)/kJ mol⁻¹ 389 (a) NH₃ (c) AsH₃ 322 255

- (b) PH2
- (d) SbH,
- 251. The deep blue colour produced on adding excess of ammonia to copper sulphate is due to presence of
 - (a) Cu2+
- (b) $Cu(NH_3)_4^{2+}$
- (c) $Cu(NH_3)_6^{2+}$
- (d) $Cu(NH_3)_2^{2+}$
- 252. Blue solid which is obtained on reacting equimolar amounts of two gases at 245K is?
 - (a) N₂O
- (b) N₂O₃
- (c) N_2O_4
- (d) N_2O_5
- 253. Concentrated nitric acid, upon long standing, turns yellow brown due to the formation of
 - (a) NO
- (b) NO₂
- (c) N₂O
- (d) N_2O_4
- 254. In the reaction

 $4\text{HNO}_3 + P_4O_{10} \rightarrow 4\text{HPO}_3 + X$, the product X is

- (a) N_2O_5
- (b) N₂O₃
- (c) NO₂
- (d) H₂O
- 255. Ammonia on catalytic oxidation gives an oxide from which nitric acid is obtained. The oxide is:
 - (a) N_2O_3
- (c) NO₂
- (d) N₂O₅

- 256. What is the change observed when AgCl reacts with NH₃?
 - (a) White ppt is formed
 - Solution become colourless (b)
 - Yellow ppt is formed (c)
 - (d) No change is observed
- In which of the following equations the product formed has similar oxidation state for nitrogen?
 - $NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$
 - (ii) $2Pb(NO_3)_2 \xrightarrow{673K} 4NO_2 + 2PbO + O_2$
 - (iii) $4HNO_3 + P_4O_{10} \longrightarrow 4HPO_3 + 2N_2O_5$

(iv)
$$2NO_2 \xrightarrow{Cool} N_2O_4$$

- (a) (i) and (iii)
- (b) (ii) and (iv)
- (c) (i) and (v)
- (iii) and (iv)
- 258. What is Z in following reaction

$$CuSO_4 + Z \rightarrow Cu_3P_2 + H_2SO_4$$

 $HgCl_2 + Z \rightarrow Hg_3P_2 + HCl$

- (a) White phosphorus
- (b) Red phosphorus
- (c) Phosphine
- (d) Orthophosphoric acid
- 259. Electronegativity of oxygen is more than sulphur yet H₂S is acidic while water is neutral. This is because
 - (a) water is highly associated compound
 - (b) molecular mass of H₂S is more than H₂O
 - H₂S is gas while H₂O is a liquid
 - (d) H-S bond is weaker than H-O bond
- 260. It is possible to obtain oxygen from air by fractional distillation because
 - oxygen is in a different group of the periodic table from nitrogen
 - oxygen is more reactive than nitrogen
 - (c) oxygen has higher b.p. than nitrogen
 - (d) oxygen has a lower density than nitrogen.
- 261. Which of the following structures is the most preferred and hence of lowest energy for SO3?

- 262. Which one of the following arrangements does not give the correct picture of the trends indicated against it?
 - (i) $F_2 > Cl_2 > Br_2 > I_2$: Oxidizing power
 - (ii) $F_2 > Cl_2 > Br_2 > I_2$: Electron gain enthalpy
 - (iii) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy
 - (iv) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity.
 - (a) (ii) and (iv)
- (b) (i) and (iii)
- (c) (ii) and (iii)
- (d) (ii), (iii) and (iv)

- **263.** The correct order of the thermal stability of hydrogen halides (H–X) is
 - (a) HI>HCl<HF>HBr (b) HCl<HF>HBr<HI
 - (c) HF>HCl>HBr>HI (d) HI<HBr>HCl<HF
- 264. In the case of alkali metals, the covalent character decreases
- in the order:
 - (a) MF > MCl > MBr > MI (b) MF > MCl > MI > MBr
 - (c) MI > MBr > MCl > MF (d) MCl > MI > MBr > MF
- **265.** Which of the following order is/are incorrect regarding the property indicated against it?
 - (i) HF>HI>HBr>HCl: Thermal stability
 - (ii) $Cl_2O_7 > Cl_2O_6 > ClO_2 > Cl_2O$: Acidic character
 - (iii) SbCl₃ > SbCl₅: Covalent character
 - (iv) MCl > MBr : Ionic character (a) (iii) only (b) (
 - (b) (ii) only
 - (c) (i) and (iii)
- (d) (ii) and (iv)
- **266.** What is X and Y in the given reactions?
 - $2X_2(g) + 2H_2O(l) \rightarrow 4H^+(aq) + 4X^-(aq) + O_2(g)$ $Y_2(g) + H_2O(l) \rightarrow HY(aq) + HOY(aq)$
 - (a) X = Cl, Y = F
- (b) X = Cl, Y = Br
- (c) X=F, Y=Cl
- (d) X=I, Y=F
- **267.** Which of the following is correct about the reaction?

- (a) It is disproportionation reaction
- (b) Oxidation number of Cl decreases as well as increases in this reaction
- (c) This reaction is used for the manufacture of halates
- (d) All of these

- 268. Which pair gives Cl₂ at room temperature:
 - (a) NaCl+Conc. H₂SO₄ (b) Conc. HCl+ KMnO₄
 - (c) NaCl + Conc. HNO₃ (d) NaCl+ MnO₂
- 269. The elements which occupy the peaks of ionisation energy curve are
 - (a) Na, K, Rb, Cs
- (b) Na, Mg, Cl, I
- (c) Cl, Br, I, F
- (d) He, Ne, Ar, Kr
- **270.** End-product of the hydrolysis of XeF₆ is
 - (a) XeF₄O
- (b) XeF₂O₂
- (c) XeO₃
- (d) XeO₃
- 271. The formation of O₂⁺[PtF₆]⁻ is the basis for the formation of xenon fluorides. This is because
 - (a) O₂ and Xe have comparable sizes
 - (b) both O2 and Xe are gases
 - (c) O2 and Xe have comparable ionisation energies
 - (d) Both (a) and (c)
- **272.** What are the products formed in the reaction of xenon hexafluoride with silicon dioxide?
 - (a) XeSiO₄+HF
- (b) $XeF_2 + SiF_4$
- (c) XeOF₄ + SiF₄
- (d) $XeO_3 + SiF_2$
- 273. XeO₄ molecule is tetrahedral having:
 - (a) Two $p\pi d\pi$ bonds
- (b) One $p\pi d\pi$ bonds
- (c) Four $p\pi d\pi$ bonds
- (d) Three $p\pi d\pi$ bonds

HINTS AND SOLUTIONS

FACT/DEFINITION TYPE QUESTIONS

- 1. (d) Ionic radii increases down the group
- 2. (b) In case of nitrogen, d-orbitals are not available.
- (a) Collectively these elements are called pnicogens and their compound pniconides.
- 4. (d) Metallic character increases down the group, Bi is most metallic
- 5. **(b)** The melting point in group 15 increases upto arsenic and then decreases upto bismuth.
- 6. (d) Bismuth forms metallic bonds in elemental state.
- 7. (a) -3, +3, +5
- (d) N₂ molecule contains triple bond between N atoms having very high dissociation energy (946 kJ mol⁻¹) due to which it is relatively inactive.
- (a) Nitrogen due to small size is able to show pπ-pπ lateral overlap forming N ≡ N, rest elements due to bigger size are not able to show pπ-pπ lateral overlap.
- **10. (c)** Catenation tendency is higher in phosphorus when compared with other elements of same group.
- 11. (c) Nitrogen form N_2 (i.e. N = N) but phosphorus form P_4 , because in P_2 , $p_{\pi} p_{\pi}$ bonding is present which is a weaker bonding.
- 12. (d) The cause of inert nature of N_2 is the presence of triple bond $\ddot{N} \equiv \ddot{N}$
- 13. (b)
- **14. (b)** Phosphorous can achieve coordination number 5 due to vacant d atomic orbitals in valence shell which is not possible in nitrogen
- 15. **(b)** The order of boiling points of the group 15 hydrides is: BiH₃ > SbH₃ > NH₃ > AsH₃ > PH₃
- 16. (a) Oxide in which central atom has higher charge and more electronegativity is more acidic, i.e.
 N₂O₅ > N₂O₄ > P₂O₅ > As₂O₃.
- 17. (a) Order of dipole moment

 NH₃ > PH₃ > AsH₃ > SbH₃

 (Based upon electronegativity)
- 18. (c) As the size of central atom increases the lone pair of electrons occupies a larger volume. In other words electron density on the central atom decreases and consequently its tendency to donate a pair of electrons decreases along with basic character from NH₃ to BiH₃.
- 19. (a) NF₅ does not exist because N does not form pentahalides due to the absence of d-orbital in its valence shell. While P, As and Sb form pentahalides of the general formula MX₅ (where, M = P, As and Sb) due to the presence of vacant d-orbitals in their respective valence shell.

- 20. (d) Bi forms basic oxides whereas N and P form acidic and As and Sb form amphoteric oxides.
- 21. (b) The basic character decreases from NH₃ to BiH₃. The basic nature is due to the presence of lone pair of electrons on the central atom. NH₃ is the strongest electron pair donor due to its small size as the electron density of the electron pair is concentrated over a small region. As the size increases the electron density gets diffused over a large region and hence the ability to donate the electron pair (basic nature) decreases.
- (a) NCl₅ in not possible because N does not contain d-orbitals.
 Only nitrogen has a tendency to form pπ pπ multiple bonds. Other forms dπ pπ multiple bonds easily.
- 23. (c) 24. (b)
- 25. (d) $NH_4Cl + NaNO_2 \xrightarrow{-NaCl} NH_4NO_2$

$$\xrightarrow{\text{Heat}} N_2 + 2H_2O.$$

- 26. (a)
- 27. (b) In Haber's process for manufacture of NH₃, finely divided iron is used as catalyst and molybdenum is used as catalytic promoter

$$N_2(g) + 3H_2(g) \xrightarrow{\text{Fe+Mo}} 2NH_3(g)$$

28. (d) N₂H₄ and NH₄Cl are obtained by reaction of ammonia with hypochlorite anion.

$$3NH_3 + NaOCl \longrightarrow N_2H_4 + NH_4Cl + NaOH$$

- 29. (a) HNO₃ and CuSO₄ are not drying agents, while P₂O₅ reacts with NH₃. The moisture present in NH₃ is removed by passing it through a tower packed with quicklime (CaO).
- **30. (b)** Ammonia has pyramidal shape with sp³ hybridisation.
- 31. (b) $3\text{CuO} + 2\text{NH}_3 \rightarrow 3\text{Cu} + 3\text{H}_2\text{O} + \text{N}_2$, O.S. of N in NH₃ is -3 and in N₂ is zero. Hence loss of 3 electrons
- 32. (b) NH₃ is not used as anaesthetic
- 33. (b) Liquid ammonia has high vapour pressure which is lowered down by cooling, otherwise the liquid will bump.
- 34. (c) By Haber's process
- (a) Only nitrates of heavy metals and lithium decompose on heating to produce NO₂.
- **36.** (d) N₂O₃, N₂O₄ and N₂O₅ are acidic oxides. Only N₂O is neutral oxide.

The structure clearly shows the presence of covalent and co-ordinate bonds.

- NO₂ is reddish brown coloured gas. Rest of the oxides are colourless.
- 39. O.S. of N (c) Compound N_2O +1NO +2NO2 +4+5NO₃ NH_4 -3

Therefore increasing order of oxidation state of N is:

$$NH_4^+ < N_2O < NO < NO_2 < NO_3^-$$

- 40. (c) In N2O (nitrous oxide) two N atoms are covalently bonded through triple bond $[N \equiv N \longrightarrow O]$
- $FeSO_4 + NO \rightarrow FeSO_4.NO$ 41. **(b)**
- 42. (b)
- 43. (a) N₂O is used as anaesthetic
- $2NO + O_2 \rightarrow 2NO_2$ brown 44. (c)
- Phosphorus from stable P₄ molecule. 45.
- $4NH_3 + 5O_2 \xrightarrow{Pt. \text{ gauge}} 4NO + 6H_2O$ (a) 46.
- 47. (b) The slow decomposition of HNO3 is represented by the eqn. $4HNO_3 \rightarrow 4NO_2 + 2H_2O + O_2$ (yellow-brown)
- For nitrogen, only NF₃ is known to be stable. 48. (d)
- $8NH_3 + 3Cl_2 \longrightarrow 6NH_4Cl + N_2$ 49. (a) $NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl$ (excess)
- BiH₃ is the strongest reducing agent while NH₃ is the weakest reducing agent.
- phosphorus are purely acidic.
- 52. NH₃ is not used in the pickling of stainless steel.
- (d) $4 \text{ Zn} + 10 \text{ HNO}_3 \text{ (dil.)} \rightarrow 4 \text{ Zn} (\text{NO}_3)_2 + 5 \text{H}_2 \text{O} + \text{N}_2 \text{O}$ $Zn + 4 HNO_3 (conc.) \rightarrow Zn(NO_3)_2 + 2H_2O + 2NO_2$
- Both white and red phosphorus are not soluble in CS₂ only white phosphorus is soluble in CS2.

- White phosphorous is most reactive 56.
- White phosphorous is P4 and tetrahedral 57.
- 58. Except (a) all other properties are shown by white phosphorous.
- 59. (b) White phosphorus on heating readily catches fire in air to give dense white fumes of P4O10.

$$P_4 + 5O_2 \longrightarrow P_4O_{10}$$

- Monoclinic sulphur is stable above 369 K. 60. (c)
- $Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$; i.e 2 moles of 61. phosphine are produced from one mole of calcium phosphide.
- 62. (d) PH3 is covalent hydride
- Red P does not react with NaOH to give PH3. 63. (b)
- PH₃ is not obtained when metaphosphoric acid is 64.
- The combustibility of PH3 is due to presence of P2H4. 65. The pure PH₃ is not combustible.
- $2H_3PO_4 \xrightarrow{600^{\circ}C} 2HPO_3$ 66.
- $P_2O_5 + 3H_2O \xrightarrow{\Delta} 2H_3PO_4$
- Orthophosphoric acid, H₃PO₄ contains three P-OH bonds and is therefore, tribasic.

orthophosphoric acid

- **(b)** $PCl_3 + H_2O \longrightarrow POCl_3 + 2HCl$ $POCl_3 + 3H_2O \longrightarrow H_3PO_4 + 3HCl$
- (c) H₃PO₂ is named as hypophosphorous acid. It is monobasic as it contains only one P - OH bond, its basicity is one.

The oxides of the type E₂O₃ of nitrogen and 71. (a) We know that empirical formula of hypophosphorus acid is H₃PO₂. In this only one ionisable hydrogen atom is present i.e. it is monobasic. Therefore option (a) is correct structural formula of it.

73. (c) Structure of hypophosphorous acid

$$\begin{array}{c}
H \\
H - O - P \rightarrow C \\
\downarrow \\
H
\end{array}$$

Two H-atoms are attached to P atom.

In cyclic metaphosporic acid number of P-O-P bonds is three.

75. (d)

76. (b)

77. **(b)**
$$H \longrightarrow H$$
 Hypophosphorous acid (H_3PO_2) is a

monobasic acid. i.e., it has only one ionisable hydrogen atom or one OH is present.

- (c) Hybridisation in $PCl_5 = \frac{1}{2}(5+5+0-0 = 5)sp^3d$
- H₅P₅O₁₅ (HPO₃)₅. It is metaphosphoric acid which is a cyclic phosphate.
- 80. H₄P₂O₅ is pyrophosphorous acid it contains P-O-P (b)
- 81. H₃PO₄ is tribasic (c)
- Hypophosphorous acid is H₃PO₂ in which O.S. of P 82. (a)

83. (c)

84. (d) Structures of given oxyacids are following

(a) HO OH OH OH
$$H_4P_2O_7$$

(b)
$$\underset{H_3PO_2}{\overset{O}{\underset{H}{\bigvee}}} H$$
 (c) $\underset{HPO_3}{\overset{O}{\underset{HPO_3}{\bigvee}}} O$

(d)
$$\stackrel{O}{\underset{H_3PO_4}{\parallel}}$$
 (e) $\stackrel{O}{\underset{H_3PO_4}{\parallel}}$ OH $\stackrel{O}{\underset{H_3PO_5}{\parallel}}$

The H-atom of the -OH group is ionisable whereas H-atom which is directly linked to P-atom is nonionisable. Thus H₃PO₃ is dibasic acid.

Pyrophosphorous acid (H₄P₂O₅) is a dibasic acid as it contains two P-OH bonds.

Formula of cyclotrimetaphosphoric acid is (HPO₃)₃ Oxidation state of 'P' is 3(+1+x+3(-2))=0 $x + -6 + 1 = 0 \implies x = +5$

Hypophosphoric acid

$$\begin{array}{ccc}
OH & OH \\
& & & \\
O \leftarrow P - O - P \rightarrow O \\
& & & \\
OH & OH
\end{array}$$

Pyrophosphoric acid

$${\rm HO} > {\rm P} < {\rm O} > {\rm P} < {\rm OH} > {\rm O$$

Orthophosphoric acid

(a) 89. (c)

- 88. 90. (d) Electron affinity increases from left to right in period 91. (a) and decreases from top to bottom in a group but electron affinity of O is less than S due to small size.
- 92. All exhibit polymorphism
- 93.

- 94. (d) H₂O is liquid but H₂S is a gas. This can be attributed to the presence of intermolecular hydrogen bonding in case of H₂O.
- 95. (b)
- 96. (a)
- 97. (a) H₂O (due to intermolecular H bonding)
- 98. (b) Oxygen being more electronegative
- 99. (a) SnO₂ is an amphoteric oxide because it reacts with acids as well as with bases to form corresponding salts. SnO₂ + 2H₂SO₄(conc) → Sn(SO₄)₂ + 2H₂O SnO₂ + 2NaOH → Na₂SnO₃ + H₂O
- **100.** (d) All hexafluorides of group 16 elements are gaseous in nature.
- **101. (b)** Oxygen can be prepared by heating oxides of Hg, Pb, Ag, Mn and Ba.

$$2 \text{HgO} \xrightarrow{\Delta} 2 \text{Hg} + \text{O}_2$$

- 102. (c) It is paramagnetic with two unpaired electrons
- **103. (c)** Total number of electrons in O₂ is 16. It has 2 unpaired electrons, the rest 14 are paired.
- **104. (b)** $2KCIO_3 \xrightarrow{\Delta} 2KCI + 3O_2$
- 105. (c) In KMnO₄ manganese is already present in its highest possible oxidation state i.e. +7.So no further oxidation is possible.
- **106. (c)** Ozone layer is beneficial to us, because it stops harmful ultraviolet radiations from reaching the earth.
- 107. (b) $2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + 4MnO_2 + O_2$
- 108. (d) Ozone is an allotrope of oxygen.
- 109. (d) $2Ag_2O(s) \rightarrow 4Ag(s) + O_2(g)$ $2Pb_3O_4(s) \rightarrow 6PbO(s) + O_2(g)$ $2PbO_2(s) \rightarrow 2PbO(s) + O_2(g)$
- 110. (a) Mn₂O₇ is an acidic oxide. BaO and Na₂O are basic oxides while N₂O is a neutral oxides.
- 111. (c) It is 8
- 112. (c) S_2 is paramagnetic. It contains two unpaired electrons in the antibonding π^* orbital
- 113. (a) $2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g)$
- 114. **(b)** O=S-O-O-S=O

Peroxodisulphuric acid

 $(H_2S_2O_8)$

- 115. (b) Conc. H₂SO₄ is a strong dehydrating agent due to which carbohydrates becomes charred on reaction with conc. H₂SO₄ acid.
- 116. (b) The key step in the manufacture of H₂SO₄ is catalystic oxidation of SO₂ with O₂ to give SO₃ in presence of V₂O₅.
- 117. (a) In SO₃, sp² hybridisation
- 118. (c) $Cu + 2H_2SO_4(conc) \longrightarrow CuSO_4 + SO_2 + 2H_2O$
- 119. (b) 2σ , one π see structure

- 120. (c) $SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H$. Bleaching action is due to reduction.
- 121. (d) Caro's acid is H₂SO₅ which contains one S O
 O H peroxy linkage. It is also known as permonosulphuric acids.

- 122. (d)
- 123. (c) Oleum is H₂S₂O₇ (H₂SO₄ + SO₃) which is obtained by dissolving SO₃ in H₂SO₄ and is called fuming sulphuric acid.
- 124. (c) 125. (a) 126. (c)
- 127. (c) It is H₂SO₅.
- 128. (c) $HO.SO_2OH + 2PCl_5 \rightarrow CISO_2Cl + 2POCl_3 + 2HCl$ Sulphuryl chloride
- 129. (b) $2Ag + 2H_2SO_4 \rightarrow 2H_2O + SO_2 + Ag_2SO_4$. Au, Pt does not react. Pb forms insoluble PbSO₄
- 130. (c)
- 131. (a) H-O-S-O-H; $6\sigma \& 2\pi$
- 132. (a) In H₂SO₄, the S atom is present in its highest oxidation state of +6. Hence H₂SO₄ can act an oxidant only by gain of electrons
- 133. (d) Ionisation potential decreases down the group.
- 134. (a)
- 135. (d) The lesser the bond energy, the weaker is the bond
- 136. (b) $3s^2 3p^5$ is electronic configuration of Cl
- 137. (c) The electron gain enthalpy order for halogens is Cl>F>Br>I
 Due to small size of fluorine the extra electron to be added feels more electron-electron repulsion.
 Therefore fluorine has less value for electron affinity than chlorine.
- 138. (d) 139. (a) Reactivity follows the order F > Cl > Br > I
- 140. (d)
- 141. (b) Except ionisation potential other factors are true to explain the oxidising (strong) behaviour of F_2 .
- 142. (b)
- 143. (d) Fluorine exhibit -ve oxidation state
- 144. (a) Since F₂ is most oxidising, it is easily reduced
- 145. (c) Chlorine shows O.S. from -1, +1 to +7, whereas others show O.S. as Na \rightarrow +1; $K\rightarrow$ +1; $F\rightarrow$ -1

- 146. (c) Fluorine always exhibit -1 oxidation state.
- **147. (b)** $H_2O + Br_2 \longrightarrow HOBr + HBr$

Thus here oxidation number of Br increases from 0 to +1 and also decreases from 0 to -1. Thus it is oxidised as well as reduced.

- 148. (d) Since all the halogens have a strong tendency to accept electrons. Therefore halogens act as strong oxidising agents and their oxidising power decreases from fluorine to iodine.
- 149. (b) On moving from top to bottom of halogen group the bond dissociation energy of hydrogen halides decreases and so the heat of formation of halogen acids also decreases.
- **150.** (a) HF, due to intermolecular H-bonding is weakest among HX acids
- 151. (c) Volatile character HCl>HBr>HI>HF
- 152. (d) Due to hydrogen bonding HF is a liquid
- 153. (d) Bleaching action of chlorine is due to oxidation in presence of moisture.
 Cl₂ + H₂O → HCl + HClO
 HClO → HCl + O
- Colouring matter $+ |O| \rightarrow Colourless$ matter 154. (b) $Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$ (cold & dil) $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$
- (hot & conc.) 155. (a) $2\text{NaOH} + \text{Cl}_2 \rightarrow \text{NaCI} + \text{NaOCI} + \text{H}_2\text{O}$
- hence Cl^- and OCl^- 156. (d) $K_2Cr_2O_7 + conc.HCl \rightarrow Cl_2$
- **157.** (d) MnO_2 or $KMnO_4$ with conc HCl give Cl_2 .
- 158. (d) $2 \text{KMnO}_4 + 16 \text{HCl} \rightarrow 2 \text{MnCl}_2 + 2 \text{KCl} + 8 \text{H}_2 \text{O} + 5 \text{Cl}_2$ O.S of Mn changes from +7 to +2 hence reduction occurs and Cl₂ is formed.
- 159. (d) $6\text{CaOCl}_2 \rightarrow \text{Ca}(\text{ClO}_3)_2 + 5\text{CaCl}_2$ It is autooxidation.
- 160. (d) HCl acid at 25° C is a gas and polar in nature
- **161.** (d) In gaseous state the HCl is covalent in nature while in aqueous solution it ionises to give H^+ and $C\bar{l}$ ions
- 162. (d) As the oxidation state of the central halogen atom increases, the halogen-oxygen bond becomes more and more covalent. As a result the thermal stability of the oxoacid increases. Thus, HClO₄ is most stable to heat, whereas HClO is least stable to heat.
- **163. (c)** The bond energy of interhalogen compounds is less than the bond energy of halogens.
- 164. (d) Interhalogen compounds are not highly volatile
- **165.** (a) ICl₇. The hybridisation is $\frac{1}{2}(7+7+0-0) = 7(sp^3d^3)$

- 166. (b) $6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$
- 167. (c) $6\text{NaOH} + 3\text{Cl}_2 \rightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$ (hot and conc.)
- **168.** (a) Rn because it is radioactive element obtained by the disintegration of radium

$$_{88}$$
Ra²²⁶ \rightarrow_{86} Rn²²² +₂ He⁴

- 169. (b) Radon is the last member of family
- 170. (d)
- 171. (d) Electronic configuration of He is 1s²
- 172. (a) Inert gases do not contain unpaired electrons
- 173. (b) Ionization potential of inert gases is highest in periodic table due to stable electronic configuration.
- 174. (a) Ionisation energy decreases as we move away from nucleus due to less electrostatic attraction between electrons and nucleus
- 175. (a) The smaller the size the least is the polarisability
- 176. (c) The differentiating electron enter in s subshell in case of He, hence it is s- block element. Its electronic configuration 1 s² makes it inert in nature hence it is placed with inert gases.
- 177. (c) Ar is the most abundant in atmosphere
- 178. (d) Due to weak van der Waal's forces, He has lowest boiling point
- 179. (d) The larger the size the more is the polarisiability
- 180. (d) He was observed in the spectrum of the sun
- **181.** (b) $_{88}$ Ra $^{226} \rightarrow_{86}$ Rn $^{222} +_{2}$ He 4 . Both are inert gases
- 182. (d) Electron gain enthalpy for noble gases is positive and it becomes less positive with increase in size of atom. Value of electron gain enthalpy $\label{eq:condition} \text{He}-48\ \text{kJ}\ \text{mol}^{-1},\quad \text{Ne}-116\ \text{kJ}\ \text{mol}^{-1}\\ \text{Ar},\quad \text{Kr}-96\ \text{kJ}\ \text{mol}^{-1}, \text{Xe}-77\ \text{kJ}\ \text{mol}^{-1}$

Hence, Ne has highest positive electron gain enthalpy.

- 183. (b)
- 184. (a) As size increases, van der Waal's forces of attraction between noble gas atoms also increases.

 Consequently, ease of their liquefaction increases.
- 185. (c) Solubility increases from He to Rn
- **186.** (d) Xe forms maximum compounds hence it is most reactive
- 187. (b) Noble gases exhibit low chemical activity
- 188. (d)
- **189.** (b) In XeOF₄, Xenon is sp^3d^2 hybridised and has one lone pair of electrons.
- 190. (a)
- **191. (d)** The products of the concerned reaction react each other forming back the reactants.

 $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$.

Hence XeF₂ has maximum no. of lone pairs of electrons.

193. (d) XeO₂F₂ has trigonal bipyramidal geometry, but due to presence of lone pair of electrons on equitorial position, its actual shape is *see-saw*.

194. (b) $XeF_4 + H_2O \rightarrow 2HF + XeOF_2$

195. (a) No compound of He as yet been reported

196. (a) No compound of Ar as yet been reported with F₂

197. (c) $XeF_6 + 3H_2O \rightarrow 6HF + XeO_3$

198. (d) Hybridisation in

$$XeF_4 = \frac{1}{2}(8+4+0-0) = 6 \text{ sp}^3 d^2$$

199. (b) XeOF₄ square pyramidal

200. (c) Hybridisation of XeF₂ is sp³d

201. (b) XeF_4 is planar

202. (a) In XeO_3 the hybridisation is sp^3

203. (a)
$$XeF_2$$
 has $Xe \bigcirc F$ structure hence number of lone

pair of electrons 3

204. (c) Hybridisation of XeF_4 is sp^3d^2 and structure is square planar

206. (c) Hybridisation in each case is XeF₄sp³d², XeF₂sp³d,

207. (c) He is obtained during radioactive decay

208. (c) The geometry of XeF₆ is distorted octahedral in which all the six positions are occupied by fluorine atoms and the lone pair of electrons of Xe atom is present at the corner of one of the triangular faces.

209. (b) The hybridization of XeO_3F_2 is sp^3d and its structure is trigonal bipyramidal in which oxygen atoms are situated on the plane and the fluoride atoms are on the top and bottom.

210. (b) The shape of XeO₃ is Trigonal Pyramidal.

(Trigonal Pyramidal Structure)

211. (c) Argon is used in high temperature welding and other operations which require a non-oxidising atmosphere and the absence of nitrogen.

212. (b) Neon gives a distinct reddish glow when used in either low-voltage neon glow lamps or in high voltage discharge tube.

- 213. (c) Helium is twice as heavy as hydrogen it is inflammable but not lighter than hydrogen. Helium has the lowest melting and boiling point of any element which makes liquid helium an ideal coolant for many extremely low temperature application such as super conducting magnet and cryogenic research where temperature close to absolute zero are needed. He is used in gas cooled atomic reactors as a heat transfer agent.
- 214. (c) Coloured discharge tubes mainly contain Neon
- 215. (a) Breathing mixture is $(O_2 + He)$
- 216. (a) Mixture of $(He + O_2)$ is used for asthma patient
- 217. (b) 218. (c) 219. (d)

STATEMENT TYPE QUESTIONS

- 220. (a) Phosphorus occurs in minerals of the apatite family, $Ca_9(PO_4)_6$, CaX_2 (X = F, Cl or OH) which are main components of phosphate rocks whereas arsenic and antimony are found as sulphide minerals. The increase in covalent radii from N to P is greater in comparison to increase from As to Bi.
- 221. (c) For nitrogen oxidation states from +1 to +4 disproportionate in acidic solution only. Oxidation state of phosphorous in P₂O₅ is +5 whereas in P₂O₅ is +3 thus P₂O₅ is more acidic than P₂O₃.
- 222. (b)
- **223.** (a) Oxygen shows oxidation state of +2 in OF₂. H₂O which is a hydride of oxygen element of group 16 is neutral in nature.
- 224. (c) ***
 O O O O O

Ozone is diamagnetic in nature (due to presence of paired electron) and both the O-O bond length are equal. It has a bent structure.

- **225. (b)** NH₃ being basic reacts with acidic H₂SO₄ thus H₂SO₄ cannot be used for drying NH₃.
- **226. (b)** Physical state of iodine is different from other halogens as iodine is solid, bromine is a liquid whereas fluorine and chlorine are gases.
- **227. (b)** At 298K, CIF exits as a gas.
- 228. (d)
- **229.** (c) For statement (iii) preparation of XeF₂ requires Xe in excess amount

$$Xe(g) + F_2(g) \xrightarrow{673K, 1 \text{ bar}} XeF_2(s)$$
(excess)

For statements (iv)

$$2XeF_2(s) + 2H_2O(l) \longrightarrow 2Xe(g) + 4HF(aq) + O_2(g)$$

$$6XeF_4 + 12H_2O \longrightarrow 4Xe + XeO_3 + 24HF + 3O_2$$

 $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$

MATCHING TYPE QUESTIONS

- 230. (b) 231. (a) 232. (a) 233. (c) 234. (a)
- 235. (b) 236. (b) 237. (b) 238. (b) 239. (a)
- 240. (c) 241. (a)

ASSERTION-REASON TYPE QUESTIONS

- 242. (c) At higher temperatures, dinitrogen combines with metals to form ionic nitrides.
- 243. (c)
- **244.** (a) Both assertion and reason are true and reason is the correct explanation of assertion.

$$\underbrace{\begin{array}{l} M \\ \text{(metal)} \end{array}}_{\text{(conc.)}} + \underbrace{\begin{array}{l} MNO_3 \\ \text{(metal nitrate)} \end{array}}_{\text{(metal nitrate)}} + \underbrace{\begin{array}{l} H \\ \text{(nascent hydrogen)} \end{array}}_{\text{(nascent hydrogen)}}$$

$$2HNO_3 + 2H \longrightarrow 2NO_2 + 2H_2O$$

- **245. (b)** White phosphorus exists as P₄ tetrahedral molecule having P-P-P bond angle 60°. Hence the molecule is under strain and more reactive. On the other hand red phosphorus exists as P₄ tetrahedra which are joined together through covalent bonds giving polymeric structure.
- 246. (c) Bond angle of H₂S (92°) < H₂O (104°31). As the electronegativity of the central atom decreases, bond angle decreases. In the present case, S is less electronegative than oxygen. Thus bond pairs in H₂S are more away from the central atom than in H₂O and thus repulsive forces between bond pairs are smaller producing smaller bond angle.
- 247. (a) 248. (a)

CRITICAL THINKING TYPE QUESTIONS

- **249. (b)** With the decrease in the electronegativity of central atom the bond angle decreases
- 250. (d)
- **251. (b)** $CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]SO_4$

Blue complex due to $Cu(NH_3)_4^{2+}$

- **252. (b)** $2NO + N_2O_4 \xrightarrow{250K} 2N_2O_3$
- **253. (b)** The slow decomposition of HNO₃ is represented by the eqn.

$$4HNO_3 \rightarrow 4NO_2 + 2H_2O + O_2$$
(yellow-brown)

- 254. (a)
- **255.** (c) $[Fe(H_2O)_5NO]^{2+}$ ion is formed
- 256. (b) $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ Colourless White ppt $AgCl(s) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2]Cl(aq)$ White ppt Colourless
- **257.** (b) NO_2 and N_2O_4 has + 4 oxidation state for nitrogen.
- 258. (c) $3\text{CuSO}_4 + 2\text{PH}_3 \rightarrow \text{Cu}_3\text{P}_2 + 3\text{H}_2\text{SO}_4$ $3\text{HgCl}_2 + 2\text{PH}_3 \rightarrow \text{Hg}_3\text{P}_2 + 6\text{HCl}$

- **259.** (d) SH-bond is weaker than, O-H bond. Hence H₂S will furnish more H⁺ ions
- **260. (c)** Air is liquified by making use of the joule-Thompson effect (cooling by expansion of the gas) Water vapour and CO₂ are removed by solidification. The remaining major constituents of liquid air i.e., liquid oxygen and liquid nitrogen are separated by means of fractional distillation (b.p. of O₂ = -183°C : b. P. of N₂ = -195.8°C)
- 261. (d) Formal charges help in the selection of the lowest energy structure from a number of possible Lewis structures for a given compound. The lowest energy structure means the structure with the smallest formal charge on each atom of the compound. A Lewis dot structure is preferable when all formal charges are zero.
- **262.** (c) From the given options we find option (a) is correct. The oxidising power of halogens follow the order $F_2 > Cl_2 > Br_2 > I_2$. Option (b) is incorrect because it in not the correct order of electron gain enthalpy of halogens.

The correct order is $Cl_2 > F_2 > Br_2 > I_2$. The low value of F_2 than Cl_2 is due to its small size.

Option (c) is incorrect. The correct order of bond dissociation energies of halogens is

$$Cl_2 > Br_2 > F_2 > I_2$$
.

Option (d) is correct. It is the correct order of electronegativity values of halogens. Thus option (b) and (c) are incorrect.

263. (c) The H–X bond strength decreases from HF to HI. i.e. HF > HCl > HBr > HI. Thus HF is most stable while HI is least stable. The decreasing stability of the hydrogen halide is also reflected in the values of dissociation energy of the H–X bond

H-F H-Cl H-Br H-I $135 \text{ kcal mol}^{-1}$ $103 \text{ kcal mol}^{-1}$ 87 kcal mol^{-1} 71 kcal mol^{-1}

- **264.** (c) MI > MBr > MCl > MF. As the size of the anion decreases covalent character also decreases.
- 265. (a) Metal halides with higher oxidation state are more covalent than the one in lower oxidation state.

- **266.** (c) $2F_2(g) + 2H_2O(l) \rightarrow 4H^+(aq) + 4F^-(aq) + O_2(g)$ $Cl_2(g) + 2H_2O(l) \rightarrow HCl(aq) + HOCl$
- 267. (d) NaClO → NaClO₃+2NaCl All statements are correct as evident from the reaction
- **268.** (b) $2\text{KMnO}_4 + 16\text{HCl} \rightarrow 2\text{KCl} + 2\text{MnCl}_2 + 8\text{H}_2\text{O} + 5\text{Cl}_2$

269. (d

- 270. (c) XeF₆+3H₂O → XeO₃+6HF ∴ Complete hydrolysis of XeF₆ gives XeO₃ (an explosive).
- 271. (d) (i) The first ionization energy of xenon (1, 170 kJ mol⁻¹) is quite close to that of dioxygen (1,180 kJ mol⁻¹).
 (ii) The molecular diameters of xenon and dioxygen are almost identical.
 Based on the above similarities Barlett (who prepared

Based on the above similarities Barlett (who prepared O₂⁺[PtF₆]⁻ compound) suggested that since oxygen combines with PtF₆, so xenon should also form similar compound with PtF₆.

- **272.** (c) $2XeF_6 + SiO_2 \rightarrow SiF_4 + 2XeOF_4$
- **273.** (c) Xenon undergo sp^3 hybridization.

1 1 1 1 1 1 (third excited state)

In the fourth excited state xenon atom, has 8 unpaired electrons

One s and three p orbital undergo sp^3 hybridization. Four sp^3 hybrid orbitals form four σ bonds with oxygen atoms. They are $\sigma sp^3 - p$. Four $p\pi - d\pi$ bonds are also formed with oxygen atoms by the unpaired electrons.

